Control of resonance enhanced multi-photon ionization photoelectron spectroscopy by phase-shaped femtosecond laser pulse.
نویسندگان
چکیده
In this paper, we theoretically demonstrate that the (2+1+1) resonance enhanced multi-photon ionization photoelectron spectroscopy in sodium atom can be effectively controlled by shaping femtosecond laser pulse with a π phase step modulation in weak laser field, involving its total photoelectron energy, maximal photoelectron intensity, and spectroscopic bandwidth. Our results show that the total photoelectron energy can be suppressed but not enhanced, the maximal photoelectron intensity can be enhanced and also suppressed, and the photoelectron spectroscopy can be tremendously narrowed. These theoretical results can provide a feasible scheme to achieve the high-resolution photoelectron spectroscopy and study the excited state structure in atomic and molecular systems.
منابع مشابه
Toward elucidating the mechanism of femtosecond pulse shaping control in photodynamics of molecules by velocity map photoelectron and ion imaging.
The control of photofragmentation and ionization in a polyatomic molecule has been studied by femtosecond chirped laser pulse excitation and velocity map photoelectron and ion imaging. The experiments aimed at controlling and investigating the photodynamics in CH(2)BrCl using tunable chirped femtosecond pulses in the visible wavelength region 509-540 nm at maximum intensities of about 4x10(13) ...
متن کاملEffect of laser spectral bandwidth on coherent control of resonance-enhanced multiphoton-ionization photoelectron spectroscopy.
The high-resolution (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy (REMPI-PS) can be obtained by measuring the photoelectron intensity at a given kinetic energy and scanning the single π phase step position. In this paper, we further demonstrate that the high-resolution (2 + 1) REMPI-PS cannot be achieved at any measured position of the kinetic energy by this measu...
متن کاملCoherent strong-field control of multiple states by a single chirped femtosecond laser pulse
We present a joint experimental and theoretical study on strongfield photo-ionization of sodium atoms using chirped femtosecond laser pulses. By tuning the chirp parameter, selectivity among the population in the highly excited states 5p, 6p, 7p and 5f, 6f is achieved. Different excitation pathways enabling control are identified by simultaneous ionization and measurement of photoelectron angul...
متن کاملUltrafast internal conversion of aromatic molecules studied by photoelectron spectroscopy using Sub-20 fs laser pulses.
This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*)-S1(nπ*) internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm). While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the ph...
متن کاملComplete photoionization experiments via ultrafast coherent control with polarization multiplexing.
Photoelectron angular distributions (PADs) obtained from ionization of potassium atoms using moderately intense femtosecond IR fields (∼10^{12} W cm^{-2}) of various polarization states are shown to provide a route to "complete" photoionization experiments. Ionization occurs by a net three-photon absorption process, driven via the 4s→4p resonance at the one-photon level. A theoretical treatmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 17 شماره
صفحات -
تاریخ انتشار 2012